Jinyang Liu
Assistant Professor
Department of Computer Science
University of Houston
Email: jliu 217 at central dot uh dot edu
Biography
I'm Jinyang Liu, an assistant professor of the department of Computer Science at the University of Houston. I received my a PhD degree in the computer science major at the University of California, Riverside in June 2024. Prior to that, I received my Master's degree in Data Science from Peking University in 2019 and received my B.S. degree in Mathematics and Applied Mathematics from Peking University in 2016. During my Ph.D. studies, I have been working as a long-term research intern in the ECP-EZ project at Argonne National Laboratory (ANL)
My major research field is scientific data lossy compression, including traditional methods and Deep-learning-based methods. I also have research interests and experiences broadly in the areas of high-performance computing, large-scale scientific data management and reduction, and deep learning (in HPC applications). I have presented publications in various highly prestigious conferences and journals such as ACM SIGMOD, IEEE/ACM SC, ACM ICS, IEEE ICDE, IEEE IPDPS, IEEE BigData, IEEE Cluster, IEEE TPDS, etc. I have received the Dissertation Year Fellowship (DYP) award from UCR and a Best Paper Finalist from ACM ICS 23'. During my work at ANL, based on the SZ compression framework, I have developed several different scientific data error-bounded lossy compressors, namely AE-SZ, QoZ, FAZ, and cuSZ-I.
I am seeking for several Ph. D. students for my lab who can start their study in Fall 2025 or later. My full CV is at: My CV. Check here for more information about opening PhD positions in my lab.
Education
- Ph. D. in Computer Science, University of California, Riverside, 2019-2024.
- M. S. in Data Science, Peking University, 2016-2019.
- B. S. in Mathematics and Applied Mathematics, Peking University, 2011-2016.
Awards
- Best Paper Finalist in International Conference on Supercomputing 2023 (ICS '23), 2023
- Dissertation Year Program Fellowship, University of California, Riverside, 2023
- 2021 R&D 100 Award (SZ compression framework), 2021
- Outstanding Graduate Student, Peking University, 2019
- Outstanding Research Award, Peking University, 2018
Research Interests
- High Performance Computing
- Scientific Data Management
- Deep learning for High Performance Computing and Data Reduction
- AI for Science
Latest News
- 11/2024: One paper was accepted by PPoPP '25.
- 08/2024: My employment as an assistant professor of the department of Computer Science at the University of Houston started.
- 07/2024: One paper was accepted by CLUSTER '24.
- 06/2024: My first-author paper High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Multi-component Interpolation and another 1 paper were accepted by SC '24.
- 04/2024: One paper was accepted by ICS '24.
- 03/2024: I will join the department of Computer Science at the University of Houston on Fall 2024.
- 01/2024: Two papers were accepted by IPDPS '24.
- 11/2023: One paper was accepted by ICDE '24.
- 11/2023: My first-author paper High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Multi-component Interpolation was accepted by SIGMOD '24.
- 10/2023: My first-author paper Scientific Error-bounded Lossy Compression with Super-resolution Neural Networks and two other papers were accepted by BigData '23.
- 09/2023: Two papers were accepted by HiPC '23.
- 09/2023: One paper was accepted by TPDS.
- 08/2023: One poster was accepted by Cluster '23.
- 07/2023: One paper was accepted by Cluster '23.
- 06/2023: Attended the ICS '23 conference. Made a presentation of my paper FAZ: A flexible auto-tuned modular error-bounded compression framework for scientific data.
- 05/2023: My accepted paper FAZ: A flexible auto-tuned modular error-bounded compression framework for scientific data was nominated as a best paper candidate for ICS '23.
- 04/2022: One poster was accepted by HPDC '23.
- 04/2022: My paper FAZ: A flexible auto-tuned modular error-bounded compression framework for scientific data (me as the first author) and another were accepted by ICS '23.
- 03/2022: Received the Dissertation Year Program (DYP) award from UC Riverside.
- 11/2022: Attended the SC '22 conference. Made a presentation of my paper Dynamic quality metric oriented error bounded lossy compression for scientific datasets.
- 06/2022: My paper Dynamic quality metric oriented error bounded lossy compression for scientific datasets was accepted by SC '22.
- 11/2021: My paper Improving lossy compression for sz by exploring the best-fit lossless compression techniques was accepted by BigData '21.
- 09/2021: Attended the Cluter '21 conference. Made a presentation of my paper Exploring autoencoder-based error-bounded compression for scientific data.
- 07/2021: My paper Exploring autoencoder-based error-bounded compression for scientific data was accepted by Cluster '21.
- 03/2021: One paper was accepted by ICS '21.
- 07/2019: Received the "Outstanding Graduates" Award from the AAIS departmant of Peking University.
Selected Publications ( Full list in Google Scholar)
SC '24
Jinyang Liu*, Jiannan Tian*, Shixun Wu*, Sheng Di, Boyuan Zhang, Robert Underwood, Yafan Huang, Jiajun Huang, Kai Zhao, Guanpeng Li, Dingwen Tao, Zizhong Chen, Franck Cappello.
High-ratio Scientific Lossy Compression on GPUs with Optimized Multi-level Interpolation.
arXiv preprint arXiv:2312.05492 (2023). (*: Co-first authors)
SIGMOD '24
Jinyang Liu, Sheng Di, Kai Zhao, Xin Liang, Sian Jin, Zizhe Jian, Jiajun Huang, Shixun Wu, Zizhong Chen, Franck Cappello.
High-performance Effective Scientific Error-bounded Lossy Compression with Auto-tuned Multi-component Interpolation.
2024 ACM SIGMOD Conference.
ICS '23
(Best Paper Finalist)
Jinyang Liu, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, Franck Cappello.
FAZ: A flexible auto-tuned modular error-bounded compression framework for scientific data.
2023 InternationalConference on Supercomputing (ICS ’23), June 21–23, 2023, Orlando, FL, USA. (best paper nominee)
SC '22
Jinyang Liu, Sheng Di, Kai Zhao, Xin Liang, Zizhong Chen, Franck Cappello.
Dynamic quality metric oriented error bounded lossy compression for scientific datasets.
2022 SC22: International Conference for High Performance Computing, Networking, Storage and Analysis (SC).
BigData '23
Jinyang Liu, Sheng Di, Sian Jin, Kai Zhao, Xin Liang, Zizhong Chen, Franck Cappello.
Scientific Error-bounded Lossy Compression with Super-resolution Neural Networks.
2023 IEEE International Conference on Big Data (BigData).
BigData '21
Jinyang Liu, Sihuan Li, Sheng Di, Xin Liang, Kai Zhao, Dingwen Tao, Zizhong Chen, Franck Cappello.
Improving lossy compression for SZ by exploring the best-fit lossless compression techniques.
2021 IEEE International Conference on Big Data (Big Data).
Cluster '21
Jinyang Liu, Sheng Di, Kai Zhao, Sian Jin, Dingwen Tao, Xin Liang, Zizhong Chen, Franck Cappello.
Exploring autoencoder-based error-bounded compression for scientific data.
2021 IEEE International Conference on Cluster Computing (CLUSTER).
PPoPP '25
Shixun Wu, Yujia Zhai, Jinyang Liu, Jiajun Huang, Zizhe Jian, Huangliang Dai, Sheng Di, Zizhong Chen, Franck Cappello.
ACM SIGPLAN Symposium on Principles and Practice of Parallel Programming 2025.
SC '24
Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Zizhe Jian, Xin Liang, Kai Zhao, Xiaoyi Lu, Zizhong Chen, Franck Cappello, Yanfei Guo, Rajeev Thakur.
2024 SC24: International Conference for High Performance Computing, Networking, Storage and Analysis.
Cluster '24
Shixun Wu, Yitong Ding, Yujia Zhai, Jinyang Liu, Jiajun Huang, Zizhe Jian, Huangliang Dai, Sheng Di, Bryan Wong, Zizhong Chen, Franck Cappello.
2024 IEEE International Conference on Cluster Computing (CLUSTER).
ICS '24
Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Jinyang Liu, Yafan Huang, Ken Raffenetti, Hui Zhou, Kai Zhao, Xiaoyi Lu, Zizhong Chen, Franck Cappello, Yanfei Guo, and Rajeev Thakur.
gZCCL: Compression-Accelerated Collective Communication Framework for GPU Clusters.
the 38th ACM International Conference on Supercomputing.
IPDPS '24
Zizhe Jian, Sheng Di, Jinyang Liu, Kai Zhao, Xin Liang, Haiying Xu, Robert Underwood, Shixun Wu, Jiajun Huang, Zizhong Chen, Franck Cappello.
CliZ: Optimizing Lossy Compression for Climate Datasets with Adaptive Fine-tuned Data Prediction.
2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
IPDPS '24
Jiajun Huang, Sheng Di, Xiaodong Yu, Yujia Zhai, Zhaorui Zhang, Jinyang Liu, Xiaoyi Lu, Ken Raffenetti, Hui Zhou, Kai Zhao, Zizhong Chen, Franck Cappello, Yanfei Guo, Rajeev Thakur.
An Optimized Error-controlled MPI Collective Framework Integrated with Lossy Compression.
2024 IEEE International Parallel and Distributed Processing Symposium (IPDPS).
ICDE '24
Mingze Xia, Sheng Di, Franck Cappello, Pu Jiao, Kai Zhao, Jinyang Liu, Xuan Wu, Xin Liang, Hanqi Guo.
Preserving Topological Feature with Sign-of-Determinant Predicates in Lossy Compression: A Case Study of Vector Field Critical Points.
2024 IEEE 40th International Conference on Data Engineering (ICDE).
HiPC '23
Arham Khan, Sheng Di, Kai Zhao, Jinyang Liu, Kyle Chard, Ian Foster, Franck Cappello.
SECRE: Surrogate-based Error-controlled Lossy Compression Ratio Estimation Framework.
30th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC 2023).
HiPC '23
Pu Jiao, Sheng Di, Jinyang Liu, Xin Liang, Franck Cappello.
Characterization and Detection of Artifacts for Error-controlled Lossy Compressors.
30th IEEE International Conference on High Performance Computing, Data, and Analytics (HiPC 2023).
Cluster '23
Jiajun Huang, Kaiming Ouyang, Yujia Zhai, Jinyang Liu, Min Si, Ken Raffenetti, Hui Zhou, Atsushi Hori, Zizhong Chen, Yanfei Guo, Rajeev Thakur.
PiP-MColl: Process-in-Process-based Multi-object MPI Collectives.
2023 IEEE International Conference on Cluster Computing (CLUSTER).
TPDS
Yujia Zhai, Elisabeth Giem, Kai Zhao, Jinyang Liu, Jiajun Huang, Bryan Wong, Christian Shelton, Zizhong Chen.
FT-BLAS: A Fault Tolerant High Performance BLAS Implementation on x86 CPUs.
IEEE Transactions on Parallel and Distributed Systems.
ICS '23
Shixun Wu, Yujia Zhai, Jinyang Liu, Jiajun Huang, Zizhe Jian, Bryan M. Wong, Zizhong Chen.
Anatomy of High-Performance GEMM with Online Fault Tolerance on GPUs.
2023 InternationalConference on Supercomputing (ICS ’23), June 21–23, 2023, Orlando, FL, USA.
ICS '21
Yujia Zhai, Elisabeth Giem, Quan Fan, Kai Zhao, Jinyang Liu, Zizhong Chen.
Significantly Improving Lossy Compression Quality based on An Optimized Hybrid Prediction Model.
Proceedings of the ACM International Conference on Supercomputing 2021.